Extensions 1→N→G→Q→1 with N=C32 and Q=C3xD4

Direct product G=NxQ with N=C32 and Q=C3xD4
dρLabelID
D4xC33108D4xC3^3216,151

Semidirect products G=N:Q with N=C32 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C32:(C3xD4) = C3xS3wrC2φ: C3xD4/C3D4 ⊆ Aut C32124C3^2:(C3xD4)216,157
C32:2(C3xD4) = He3:4D4φ: C3xD4/C4C6 ⊆ Aut C32366+C3^2:2(C3xD4)216,51
C32:3(C3xD4) = He3:6D4φ: C3xD4/C22C6 ⊆ Aut C32366C3^2:3(C3xD4)216,60
C32:4(C3xD4) = C3xD6:S3φ: C3xD4/C6C22 ⊆ Aut C32244C3^2:4(C3xD4)216,121
C32:5(C3xD4) = C3xC3:D12φ: C3xD4/C6C22 ⊆ Aut C32244C3^2:5(C3xD4)216,122
C32:6(C3xD4) = D4xHe3φ: C3xD4/D4C3 ⊆ Aut C32366C3^2:6(C3xD4)216,77
C32:7(C3xD4) = C32xD12φ: C3xD4/C12C2 ⊆ Aut C3272C3^2:7(C3xD4)216,137
C32:8(C3xD4) = C3xC12:S3φ: C3xD4/C12C2 ⊆ Aut C3272C3^2:8(C3xD4)216,142
C32:9(C3xD4) = C32xC3:D4φ: C3xD4/C2xC6C2 ⊆ Aut C3236C3^2:9(C3xD4)216,139
C32:10(C3xD4) = C3xC32:7D4φ: C3xD4/C2xC6C2 ⊆ Aut C3236C3^2:10(C3xD4)216,144

Non-split extensions G=N.Q with N=C32 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C32.(C3xD4) = D4x3- 1+2φ: C3xD4/D4C3 ⊆ Aut C32366C3^2.(C3xD4)216,78
C32.2(C3xD4) = C9xD12φ: C3xD4/C12C2 ⊆ Aut C32722C3^2.2(C3xD4)216,48
C32.3(C3xD4) = C9xC3:D4φ: C3xD4/C2xC6C2 ⊆ Aut C32362C3^2.3(C3xD4)216,58
C32.4(C3xD4) = D4xC3xC9central extension (φ=1)108C3^2.4(C3xD4)216,76

׿
x
:
Z
F
o
wr
Q
<